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Motivation II
• This past year I’ve met several Ceph teams in that situation:

• I send them an obscure tool with a weird name, and it saves the weekend.
• Those very expert operators call it “magic” and wonder why they didn’t know about this before.

• How could this happen? Perhaps it’s because we decided that we shouldn’t talk about Ceph 
internals.

• “Ceph is too hard … don’t talk about PGs …” – we stopped sharing experience in solving complex 
maintenance tasks.

• We wrote a bunch of code to hide complexity beneath a layer of automation, and operators stopped 
learning about things like PGs.

• So today I’m going to talk about one of my favorite topics on how Ceph works - a remix of 
something I presented at Ceph Day Berlin 2018

• Why we have PGs, what is the role of CRUSH, what is this thing called upmap, and how these things 
are all so important for optimizing Ceph maintenance at scale.
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https://www.slideshare.net/Inktank_Ceph/ceph-day-berlin-mastering-ceph-operations-upmap-and-the-mgr-balancer


Ceph stores objects

How does it decide where to store them?
And how does it remember?
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How to store objects on a cluster?
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Two-Step Placement with PGs
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Placement Group: a collection of objects managed as a single unit



Two-Step Placement with PGs
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1. Map each object to a PG uniformly randomly.
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Two-Step Placement with PGs
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1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH
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• We map objects to PGs, then map those PGs to OSDs.
Why don’t we just map the objects to directly to OSDs using CRUSH?

• In that scenario we’d be assigning each object to an OSD, one by one.
• The effect would be that all OSDs would be peered with all others.

• This would be a disaster for high availability.
• For example, any concurrent failure of 3+ disks would lead to data loss.
• Consider a 5000 OSD Ceph cluster:

• There are 125 billion failure combinations that would cause data loss.

• We peer each OSD with ~100 others, so the vast majority of such failures are harmless.
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What is the purpose of PGs?



Related Concept: Copysets
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Ceph is down 
here too

Copysets: Reducing the Frequency of Data Loss in Cloud Storage, USENIX 2013
Note: Ceph had already used this approach back in 2006

https://web.stanford.edu/~skatti/pubs/usenix13-copysets.pdf


What is the purpose of CRUSH?
• Since the beginning, CRUSH has been Ceph’s key feature, its secret sauce.

• CRUSH provides a language to describe data placement rules according to your 
infrastructure.
• E.g. place 3 copies in different servers/racks/rooms/…
• E.g. place 4+2 erasure coded shards with the first 4 on NVMes in room A and the 2 parity 

shards in room A on hdds.

• CRUSH is really fast: it computes object locations quickly.
• CRUSH maps are tiny: can be efficiently shared between servers and clients.

• Together, this means Ceph doesn’t need a large file location DB like other legacy 
storage systems. So Ceph is “exascale”.
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But CRUSH is imperfect :(
• Placing data with CRUSH causes imbalanced usage of the individual OSDs.

• Why is that a problem?
• A Ceph cluster is full when just one OSD is full.

• E.g. if one osd is 90% full and the others are 70% full, you have 20% unusable capacity.
• OSDs with more data do more work, and become a performance bottleneck.

• Why does this happen?
• We don’t have enough PGs to make statistically uniform distributions:

• Expected stdev = sqrt(#PGs per OSD), e.g. 100 PGs/OSD ⇒ 10% stdev ⇒ 20% diff 
between the most and least full OSDs.

• The “CRUSH multipick anomaly”
• Using the same crush weight to place 2nd and subsequent copies leads to small OSDs 

getting more objects than they should.
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Summary up to now
1. PGs are great for availability, scalability, and other reasons.

2. CRUSH is a great language and fast algorithm to place data reliably.

3. But CRUSH leads to imperfect usage of the OSDs.

So, why don’t we just maintain a lookup table mapping PGs to OSDs?

• It would be quite compact – we only have a few thousand PGs even for multi-PB clusters.

• We could optimize PGs placement according to any rules we want, perfectly. 
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Summary up to now… upmap!
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That’s exactly what upmap is! It’s a DB of PG locations. For this PG, if CRUSH says use osd.X, use osd.Y instead.

E.g.:
ceph osd pg-upmap-items 1.ff 1 2 3 4

for pg 1.ff, replace osd.1 with osd.2 and replace osd.3 
with osd.4

1. PGs are great for availability, scalability, and other reasons.

2. CRUSH is a great language and fast algorithm to place data reliably.

3. But CRUSH leads to imperfect usage of the OSDs.

So, why don’t we just maintain a lookup table mapping PGs to OSDs?

• It would be quite compact – we only have a few thousand PGs even for multi-PB clusters.

• We could optimize PGs placement according to any rules we want, perfectly. 



2.1-Step Placement
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1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH
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2.1-Step Placement
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1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH
3. Use upmap to improve the output of CRUSH
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How is upmap used?
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Using upmap to balance data optimally
• ceph df says my cluster is 50% full overall, but the cephfs_data pool is 75% full. 

How do I fix that imbalance?

• Ceph has an automatic balancer that uses upmap to move PGs from the most full 
OSDs to the least full OSDs.

• tl;dr: just enable it:
ceph osd set-require-min-compat-client luminous

ceph config set mgr/balancer/begin_time 0830
ceph config set mgr/balancer/end_time 1800
ceph config set mgr/balancer/max_misplaced 0.005
ceph config set mgr/balancer/upmap_max_deviation 1

ceph balancer mode upmap
ceph balancer on
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Large clusters will recover 
several petabytes of capacity 
using the upmap balancer.



The upmap balancer in action!

20Credit to Tom Byrne at STFC

https://docs.google.com/file/d/1UlpLl-QpPb4j1w2W93UiUFG9MtJW-PDQ/preview
https://www.youtube.com/watch?v=niFNZN5EKvE


But wait, there’s more…
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Cluster Maintenance at Scale
• Need to add capacity
• Need to replace OSD servers
• Need to change the CRUSH placement rules
• Need to change the OSD weights
• Need to change the CRUSH tunables

• This type of work involves:
• moving large amounts of data
• which last several days or weeks
• having an unpredictable impact on users
• with no simple undo button.

22



23

WE 
ARE 
HERE

WE 
WANT 
TO BE 
HERE

LEAP 
OF 

FAITH

Cluster Maintenance at Scale



Cluster Maintenance
• Step 1:

• Add Capacity: ceph orch apply osd ..
• Drain Hosts: ceph osd crush reweight-subtree ..
• Change tunables: ceph osd crush tunables ..

• Step 2:
• 4518 active+remapped+backfill_wait
• 2.1B (28%) objects misplaced
• Progress: Global Recovery Event [.....] (6w)

• Step 3:
• Wait 6 weeks, or ..
• Run a magic script.

• Step 4:
• HEALTH_OK
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Cluster Maintenance
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Cluster Maintenance
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What if we could 
“upmap” those 
remapped PGs 
back to where the 
data is now?



Cluster Maintenance with upmap
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Runs magic script…



Cluster Maintenance with upmap

28



Cluster Maintenance with upmap
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HEALTH_OK allows the 
operator sleep at night.

The automatic balancer 
works behind the scenes to 
balance data gradually.



No leap of faith required
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The Magic Script

• Usage: upmap-remappedTM | sh -x
• (Digital Ocean maintains a similar 

tool pgremapper)

• Planning the contribution as a 
core “it-just-works” feature of the 
balancer.
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http://upmap-remapped.py
https://github.com/digitalocean/pgremapper


One more thing…
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Towards a Ceph Copilot
• Clyso’s Ceph Copilot Assistant:

• Best Practices compliance with Ceph Analyzer
• Collecting planning, maintenance, debugging utils, 

…
• Chatbot…
• Check in our Clyso github later this quarter
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https://analyzer.clyso.com/#/analyzer
https://github.com/clyso


And since there’s time another one last 
thing…
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Chorus: An S3 Frontend Swiss Army Knife
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• My colleagues Artem and Sirisha couldn’t be here to present:
• Clyso recently released Chorus at FOSDEM 2024:

• Apache 2.0 licensed S3 frontend for transparent traffic routing, data migration, bucket replication, etc. 
between Ceph/S3-compliant backends

https://github.com/clyso/chorus


Upmap-Remapped
1. Configure the cluster for upmap.

a. ceph osd set-require-min-compat-client luminous

b. ceph config set mgr/balancer/begin_time 0830

c. ceph config set mgr/balancer/end_time 1800

d. ceph config set mgr/balancer/max_misplaced 0.005

e. ceph config set mgr/balancer/upmap_max_deviation 1

2. Removing the crush-compat → upmap-remapped after
3. Putting old hosts into “fake” racks with one host in each rack, then change the crush rule to 

rack failure domain → upmap-remapped after
4. Add new hosts, in “real” racks, crush weight 0. No data should move.
5. `ceph osd crush reweight-subtree` the new racks/hosts (e.g. to 8TB) → run upmap-remapped 

after. Turn on the balancer, in mode “upmap” so it starts moving the data.
6. Primary affinity of the old osds to 0.
7. Drain the old hosts (reweight-subtree) to 0.1, then run upmap-remapped.
8. Then finally set crush weights to 0 and remove from the cluster.
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