

Mastering Ceph Operations
upmap and the balancer

Dan van der Ster

CTO - Clyso & Ceph Executive Council

3

WE
ARE
HERE

WE
WANT
TO BE
HERE

LEAP
OF

FAITH

Motivation

Motivation II
• This past year I’ve met several Ceph teams in that situation:

• I send them an obscure tool with a weird name, and it saves the weekend.
• Those very expert operators call it “magic” and wonder why they didn’t know about this before.

• How could this happen? Perhaps it’s because we decided that we shouldn’t talk about Ceph
internals.

• “Ceph is too hard … don’t talk about PGs …” – we stopped sharing experience in solving complex
maintenance tasks.

• We wrote a bunch of code to hide complexity beneath a layer of automation, and operators stopped
learning about things like PGs.

• So today I’m going to talk about one of my favorite topics on how Ceph works - a remix of
something I presented at Ceph Day Berlin 2018

• Why we have PGs, what is the role of CRUSH, what is this thing called upmap, and how these things
are all so important for optimizing Ceph maintenance at scale.

4

https://www.slideshare.net/Inktank_Ceph/ceph-day-berlin-mastering-ceph-operations-upmap-and-the-mgr-balancer

Ceph stores objects

How does it decide where to store them?
And how does it remember?

5

How to store objects on a cluster?

6

Two-Step Placement with PGs

7

Placement Group: a collection of objects managed as a single unit

Two-Step Placement with PGs

8

1. Map each object to a PG uniformly randomly.

R
A

N
D

O
M

Two-Step Placement with PGs

9

1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH

R
A

N
D

O
M

C
R

U
SH

• We map objects to PGs, then map those PGs to OSDs.
Why don’t we just map the objects to directly to OSDs using CRUSH?

• In that scenario we’d be assigning each object to an OSD, one by one.
• The effect would be that all OSDs would be peered with all others.

• This would be a disaster for high availability.
• For example, any concurrent failure of 3+ disks would lead to data loss.
• Consider a 5000 OSD Ceph cluster:

• There are 125 billion failure combinations that would cause data loss.

• We peer each OSD with ~100 others, so the vast majority of such failures are harmless.

10

What is the purpose of PGs?

Related Concept: Copysets

11

Ceph is down
here too

Copysets: Reducing the Frequency of Data Loss in Cloud Storage, USENIX 2013
Note: Ceph had already used this approach back in 2006

https://web.stanford.edu/~skatti/pubs/usenix13-copysets.pdf

What is the purpose of CRUSH?
• Since the beginning, CRUSH has been Ceph’s key feature, its secret sauce.

• CRUSH provides a language to describe data placement rules according to your
infrastructure.
• E.g. place 3 copies in different servers/racks/rooms/…
• E.g. place 4+2 erasure coded shards with the first 4 on NVMes in room A and the 2 parity

shards in room A on hdds.

• CRUSH is really fast: it computes object locations quickly.
• CRUSH maps are tiny: can be efficiently shared between servers and clients.

• Together, this means Ceph doesn’t need a large file location DB like other legacy
storage systems. So Ceph is “exascale”.

12

But CRUSH is imperfect :(
• Placing data with CRUSH causes imbalanced usage of the individual OSDs.

• Why is that a problem?
• A Ceph cluster is full when just one OSD is full.

• E.g. if one osd is 90% full and the others are 70% full, you have 20% unusable capacity.
• OSDs with more data do more work, and become a performance bottleneck.

• Why does this happen?
• We don’t have enough PGs to make statistically uniform distributions:

• Expected stdev = sqrt(#PGs per OSD), e.g. 100 PGs/OSD ⇒ 10% stdev ⇒ 20% diff
between the most and least full OSDs.

• The “CRUSH multipick anomaly”
• Using the same crush weight to place 2nd and subsequent copies leads to small OSDs

getting more objects than they should.

13

Summary up to now
1. PGs are great for availability, scalability, and other reasons.

2. CRUSH is a great language and fast algorithm to place data reliably.

3. But CRUSH leads to imperfect usage of the OSDs.

So, why don’t we just maintain a lookup table mapping PGs to OSDs?

• It would be quite compact – we only have a few thousand PGs even for multi-PB clusters.

• We could optimize PGs placement according to any rules we want, perfectly.

14

Summary up to now… upmap!

15

That’s exactly what upmap is! It’s a DB of PG locations. For this PG, if CRUSH says use osd.X, use osd.Y instead.

E.g.:
ceph osd pg-upmap-items 1.ff 1 2 3 4

for pg 1.ff, replace osd.1 with osd.2 and replace osd.3
with osd.4

1. PGs are great for availability, scalability, and other reasons.

2. CRUSH is a great language and fast algorithm to place data reliably.

3. But CRUSH leads to imperfect usage of the OSDs.

So, why don’t we just maintain a lookup table mapping PGs to OSDs?

• It would be quite compact – we only have a few thousand PGs even for multi-PB clusters.

• We could optimize PGs placement according to any rules we want, perfectly.

2.1-Step Placement

16

1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH

R
A

N
D

O
M

C
R

U
SH

2.1-Step Placement

17

1. Map each object to a PG uniformly randomly.
2. Map each PG to a set of OSDs using CRUSH
3. Use upmap to improve the output of CRUSH

R
A

N
D

O
M

C
R

U
SH

U
PM

A
P

How is upmap used?

18

Using upmap to balance data optimally
• ceph df says my cluster is 50% full overall, but the cephfs_data pool is 75% full.

How do I fix that imbalance?

• Ceph has an automatic balancer that uses upmap to move PGs from the most full
OSDs to the least full OSDs.

• tl;dr: just enable it:
ceph osd set-require-min-compat-client luminous

ceph config set mgr/balancer/begin_time 0830
ceph config set mgr/balancer/end_time 1800
ceph config set mgr/balancer/max_misplaced 0.005
ceph config set mgr/balancer/upmap_max_deviation 1

ceph balancer mode upmap
ceph balancer on

19

Large clusters will recover
several petabytes of capacity
using the upmap balancer.

The upmap balancer in action!

20Credit to Tom Byrne at STFC

https://docs.google.com/file/d/1UlpLl-QpPb4j1w2W93UiUFG9MtJW-PDQ/preview
https://www.youtube.com/watch?v=niFNZN5EKvE

But wait, there’s more…

21

Cluster Maintenance at Scale
• Need to add capacity
• Need to replace OSD servers
• Need to change the CRUSH placement rules
• Need to change the OSD weights
• Need to change the CRUSH tunables

• This type of work involves:
• moving large amounts of data
• which last several days or weeks
• having an unpredictable impact on users
• with no simple undo button.

22

23

WE
ARE
HERE

WE
WANT
TO BE
HERE

LEAP
OF

FAITH

Cluster Maintenance at Scale

Cluster Maintenance
• Step 1:

• Add Capacity: ceph orch apply osd ..
• Drain Hosts: ceph osd crush reweight-subtree ..
• Change tunables: ceph osd crush tunables ..

• Step 2:
• 4518 active+remapped+backfill_wait
• 2.1B (28%) objects misplaced
• Progress: Global Recovery Event [.....] (6w)

• Step 3:
• Wait 6 weeks, or ..
• Run a magic script.

• Step 4:
• HEALTH_OK

24

Cluster Maintenance

25

Cluster Maintenance

26

What if we could
“upmap” those
remapped PGs
back to where the
data is now?

Cluster Maintenance with upmap

27

Runs magic script…

Cluster Maintenance with upmap

28

Cluster Maintenance with upmap

29

HEALTH_OK allows the
operator sleep at night.

The automatic balancer
works behind the scenes to
balance data gradually.

No leap of faith required

30

WE
ARE
HERE LEAP OF

FAITH

WE
WANT
TO BE
HERE

UPMAP

The Magic Script

• Usage: upmap-remappedTM | sh -x
• (Digital Ocean maintains a similar

tool pgremapper)

• Planning the contribution as a
core “it-just-works” feature of the
balancer.

31

http://upmap-remapped.py
https://github.com/digitalocean/pgremapper

One more thing…

32

Towards a Ceph Copilot
• Clyso’s Ceph Copilot Assistant:

• Best Practices compliance with Ceph Analyzer
• Collecting planning, maintenance, debugging utils,

…
• Chatbot…
• Check in our Clyso github later this quarter

33

https://analyzer.clyso.com/#/analyzer
https://github.com/clyso

And since there’s time another one last
thing…

34

Chorus: An S3 Frontend Swiss Army Knife

35

• My colleagues Artem and Sirisha couldn’t be here to present:
• Clyso recently released Chorus at FOSDEM 2024:

• Apache 2.0 licensed S3 frontend for transparent traffic routing, data migration, bucket replication, etc.
between Ceph/S3-compliant backends

https://github.com/clyso/chorus

Upmap-Remapped
1. Configure the cluster for upmap.

a. ceph osd set-require-min-compat-client luminous

b. ceph config set mgr/balancer/begin_time 0830

c. ceph config set mgr/balancer/end_time 1800

d. ceph config set mgr/balancer/max_misplaced 0.005

e. ceph config set mgr/balancer/upmap_max_deviation 1

2. Removing the crush-compat → upmap-remapped after
3. Putting old hosts into “fake” racks with one host in each rack, then change the crush rule to

rack failure domain → upmap-remapped after
4. Add new hosts, in “real” racks, crush weight 0. No data should move.
5. `ceph osd crush reweight-subtree` the new racks/hosts (e.g. to 8TB) → run upmap-remapped

after. Turn on the balancer, in mode “upmap” so it starts moving the data.
6. Primary affinity of the old osds to 0.
7. Drain the old hosts (reweight-subtree) to 0.1, then run upmap-remapped.
8. Then finally set crush weights to 0 and remove from the cluster.

36

